👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Intégrales Avec Radicaux

Intégrales avec radicaux Calculator

Get detailed solutions to your math problems with our Intégrales avec radicaux step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of intégrales avec radicaux. This solution was automatically generated by our smart calculator:

$\int\sqrt{4-x^2}dx$
2

We can solve the integral $\int\sqrt{4-x^2}dx$ by applying integration method of trigonometric substitution using the substitution

$x=2\sin\left(\theta \right)$

Differentiate both sides of the equation $x=2\sin\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(2\sin\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(2\sin\left(\theta \right)\right)$

Apply the formula: $\frac{d}{dx}\left(cx\right)$$=c\frac{d}{dx}\left(x\right)$

$2\frac{d}{d\theta}\left(\sin\left(\theta \right)\right)$

Apply the trigonometric identity: $\frac{d}{dx}\left(\sin\left(\theta \right)\right)$$=\cos\left(\theta \right)$, where $x=\theta $

$2\cos\left(\theta \right)$
3

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=2\cos\left(\theta \right)d\theta$

Apply the formula: $\left(ab\right)^n$$=a^nb^n$, where $a=2$, $b=\sin\left(\theta \right)$ and $n=2$

$\int2\sqrt{4- 4\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$

Apply the formula: $ab$$=ab$, where $ab=- 4\sin\left(\theta \right)^2$, $a=-1$ and $b=4$

$\int2\sqrt{4-4\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
4

Substituting in the original integral, we get

$\int2\sqrt{4-4\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
5

Factor the polynomial $4-4\sin\left(\theta \right)^2$ by it's greatest common factor (GCF): $4$

$\int2\sqrt{4\left(1-\sin\left(\theta \right)^2\right)}\cos\left(\theta \right)d\theta$
6

Apply the formula: $\left(ab\right)^n$$=a^nb^n$, where $a=1-\sin\left(\theta \right)^2$, $b=4$ and $n=\frac{1}{2}$

$\int2\cdot 2\sqrt{1-\sin\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
7

Applying the trigonometric identity: $1-\sin\left(\theta \right)^2 = \cos\left(\theta \right)^2$

$\int2\cdot 2\sqrt{\cos\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
8

Apply the formula: $\int cxdx$$=c\int xdx$, where $c=2$ and $x=2\sqrt{\cos\left(\theta \right)^2}\cos\left(\theta \right)$

$2\int\sqrt{\cos\left(\theta \right)^2}\cos\left(\theta \right)d\theta$
9

Simplify $\sqrt{\cos\left(\theta \right)^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$2\int\cos\left(\theta \right)\cos\left(\theta \right)d\theta$
10

Apply the formula: $x\cdot x$$=x^2$, where $x=\cos\left(\theta \right)$

$2\int\cos\left(\theta \right)^2d\theta$
11

Apply the formula: $\int\cos\left(\theta \right)^2dx$$=\frac{1}{2}\theta +\frac{1}{4}\sin\left(2\theta \right)+C$, where $x=\theta $

$2\left(\frac{1}{2}\theta +\frac{1}{4}\sin\left(2\theta \right)\right)$
12

Express the variable $\theta$ in terms of the original variable $x$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}\sin\left(2\theta \right)\right)$
13

Apply the trigonometric identity: $\sin\left(2\theta \right)$$=2\sin\left(\theta \right)\cos\left(\theta \right)$, where $x=\theta $

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+2\left(\frac{1}{4}\right)\sin\left(\theta \right)\cos\left(\theta \right)\right)$
14

Apply the formula: $\frac{a}{b}c$$=\frac{ca}{b}$, where $a=1$, $b=4$, $c=2$, $a/b=\frac{1}{4}$ and $ca/b=2\left(\frac{1}{4}\right)\sin\left(\theta \right)\cos\left(\theta \right)$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{2}\sin\left(\theta \right)\cos\left(\theta \right)\right)$

Apply the formula: $\frac{a}{b}\frac{c}{f}$$=\frac{ac}{bf}$, where $a=1$, $b=2$, $c=x$, $a/b=\frac{1}{2}$, $f=2$, $c/f=\frac{x}{2}$ and $a/bc/f=\frac{1}{2}\frac{x}{2}\frac{\sqrt{4-x^2}}{2}$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x}{4}\frac{\sqrt{4-x^2}}{2}\right)$

Apply the formula: $\frac{a}{b}\frac{c}{f}$$=\frac{ac}{bf}$, where $a=x$, $b=4$, $c=\sqrt{4-x^2}$, $a/b=\frac{x}{4}$, $f=2$, $c/f=\frac{\sqrt{4-x^2}}{2}$ and $a/bc/f=\frac{x}{4}\frac{\sqrt{4-x^2}}{2}$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{8}\right)$
15

Express the variable $\theta$ in terms of the original variable $x$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{8}\right)$
16

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$2\left(\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{8}\right)+C_0$

Apply the formula: $x\left(a+b\right)$$=xa+xb$, where $a=\frac{1}{2}\arcsin\left(\frac{x}{2}\right)$, $b=\frac{x\sqrt{4-x^2}}{8}$, $x=2$ and $a+b=\frac{1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{x\sqrt{4-x^2}}{8}$

$2\cdot \left(\frac{1}{2}\right)\arcsin\left(\frac{x}{2}\right)+2\left(\frac{x\sqrt{4-x^2}}{8}\right)+C_0$

Apply the formula: $a\frac{b}{c}$$=\frac{ba}{c}$, where $a=2$, $b=x\sqrt{4-x^2}$ and $c=8$

$2\cdot \left(\frac{1}{2}\right)\arcsin\left(\frac{x}{2}\right)+\frac{2x\sqrt{4-x^2}}{8}+C_0$

Apply the formula: $\frac{ab}{c}$$=\frac{a}{c}b$, where $ab=2x\sqrt{4-x^2}$, $a=2$, $b=x\sqrt{4-x^2}$, $c=8$ and $ab/c=\frac{2x\sqrt{4-x^2}}{8}$

$2\cdot \left(\frac{1}{2}\right)\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Apply the formula: $\frac{a}{b}c$$=\frac{ca}{b}$, where $a=1$, $b=2$, $c=2$, $a/b=\frac{1}{2}$ and $ca/b=2\cdot \left(\frac{1}{2}\right)\arcsin\left(\frac{x}{2}\right)$

$\frac{2\cdot 1}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Apply the formula: $1x$$=x$, where $x=2$

$\frac{2}{2}\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Apply the formula: $\frac{a}{b}$$=\frac{a}{b}$, where $a=2$, $b=2$ and $a/b=\frac{2}{2}$

$\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$
17

Expand and simplify

$\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Final answer to the problem

$\arcsin\left(\frac{x}{2}\right)+\frac{1}{4}x\sqrt{4-x^2}+C_0$

Are you struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!