👉 Essayez maintenant NerdPal! Notre nouvelle application de mathématiques sur iOS et Android
  1. calculatrices
  2. Matrices

Calculatrice Matrices

Résolvez vos problèmes de mathématiques avec notre calculatrice Matrices étape par étape. Améliorez vos compétences en mathématiques grâce à notre longue liste de problèmes difficiles. Retrouvez tous nos calculateurs ici.

Mode symbolique
Mode texte
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of matrices. This solution was automatically generated by our smart calculator:

$\int\frac{1}{x\left(x^2+x+1\right)}dx$

Rewrite the fraction $\frac{1}{x\left(x^2+x+1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{x\left(x^2+x+1\right)}=\frac{A}{x}+\frac{Bx+C}{x^2+x+1}$

Find the values for the unknown coefficients: $A, B, C$. The first step is to multiply both sides of the equation from the previous step by $x\left(x^2+x+1\right)$

$1=x\left(x^2+x+1\right)\left(\frac{A}{x}+\frac{Bx+C}{x^2+x+1}\right)$

Multiplying polynomials

$1=\frac{x\left(x^2+x+1\right)A}{x}+\frac{x\left(x^2+x+1\right)\left(Bx+C\right)}{x^2+x+1}$

Simplifying

$1=\left(x^2+x+1\right)A+x\left(Bx+C\right)$

Assigning values to $x$ we obtain the following system of equations

$\begin{matrix}1=A&\:\:\:\:\:\:\:(x=0) \\ 1=A+B-C&\:\:\:\:\:\:\:(x=-1) \\ 1=3A+B+C&\:\:\:\:\:\:\:(x=1)\end{matrix}$

Proceed to solve the system of linear equations

$\begin{matrix}1A & + & 0B & + & 0C & =1 \\ 1A & + & 1B & - & 1C & =1 \\ 3A & + & 1B & + & 1C & =1\end{matrix}$

Rewrite as a coefficient matrix

$\left(\begin{matrix}1 & 0 & 0 & 1 \\ 1 & 1 & -1 & 1 \\ 3 & 1 & 1 & 1\end{matrix}\right)$

Reducing the original matrix to a identity matrix using Gaussian Elimination

$\left(\begin{matrix}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1\end{matrix}\right)$

The integral of $\frac{1}{x\left(x^2+x+1\right)}$ in decomposed fractions equals

$\frac{1}{x}+\frac{-x-1}{x^2+x+1}$
2

Rewrite the fraction $\frac{1}{x\left(x^2+x+1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{x}+\frac{-x-1}{x^2+x+1}$
3

Expand the integral $\int\left(\frac{1}{x}+\frac{-x-1}{x^2+x+1}\right)dx$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$\int\frac{1}{x}dx+\int\frac{-x-1}{x^2+x+1}dx$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$\ln\left|x\right|$
4

The integral $\int\frac{1}{x}dx$ results in: $\ln\left(x\right)$

$\ln\left(x\right)$

Take out the negative sign of all the terms of the numerator of the integral

$-\int\frac{x+1}{x^2+x+1}dx$
5

The integral $\int\frac{-x-1}{x^2+x+1}dx$ results in: $-\int\frac{x+1}{x^2+x+1}dx$

$-\int\frac{x+1}{x^2+x+1}dx$
6

Gather the results of all integrals

$\ln\left|x\right|-\int\frac{x+1}{x^2+x+1}dx$

Add and subtract $\displaystyle\left(\frac{b}{2a}\right)^2$

$\frac{x+1}{x^2+x+1+\frac{1}{4}-\frac{1}{4}}$

Factor the perfect square trinomial $x^2+x+\frac{1}{4}$

$\frac{x+1}{\left(x+\sqrt{\frac{1}{4}}\right)^2+1-\frac{1}{4}}$

Calculate the power $\sqrt{\frac{1}{4}}$

$\frac{x+1}{\left(x+\frac{1}{2}\right)^2+1-\frac{1}{4}}$

Simplify the addition $\left(x+\frac{1}{2}\right)^2+1-\frac{1}{4}$

$\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{-1+1\cdot 4}{4}}$

Multiply $1$ times $4$

$\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{-1+4}{4}}$

Subtract the values $4$ and $-1$

$\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}$
7

Rewrite the expression $\frac{x+1}{x^2+x+1}$ inside the integral in factored form

$\ln\left(x\right)-\int\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}dx$

We can solve the integral $\int\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $x+\frac{1}{2}$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=x+\frac{1}{2}$

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=dx$

Rewriting $x$ in terms of $u$

$x=u-\frac{1}{2}$

Substituting $u$, $dx$ and $x$ in the integral and simplify

$-\int\frac{u+\frac{1}{2}}{u^2+\frac{3}{4}}du$

Expand the fraction $\frac{u+\frac{1}{2}}{u^2+\frac{3}{4}}$ into $2$ simpler fractions with common denominator $u^2+\frac{3}{4}$

$-\int\left(\frac{u}{u^2+\frac{3}{4}}+\frac{\frac{1}{2}}{u^2+\frac{3}{4}}\right)du$

Expand the integral $\int\left(\frac{u}{u^2+\frac{3}{4}}+\frac{\frac{1}{2}}{u^2+\frac{3}{4}}\right)du$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$-\int\frac{u}{u^2+\frac{3}{4}}du-\int\frac{\frac{1}{2}}{u^2+\frac{3}{4}}du$

The integral of a function times a constant ($\frac{1}{2}$) is equal to the constant times the integral of the function

$-\int\frac{u}{u^2+\frac{3}{4}}du- \left(\frac{1}{2}\right)\int\frac{1}{u^2+\frac{3}{4}}du$

Multiply the fraction and term in $- \left(\frac{1}{2}\right)\int\frac{1}{u^2+\frac{3}{4}}du$

$-\int\frac{u}{u^2+\frac{3}{4}}du-\frac{1}{2}\int\frac{1}{u^2+\frac{3}{4}}du$

Factor the integral's denominator by $\frac{3}{4}$

$-\int\frac{u}{u^2+\frac{3}{4}}du-\frac{1}{2}\cdot \frac{1}{\frac{3}{4}}\int\frac{1}{1+\frac{u^2}{\frac{3}{4}}}du$

Simplify the expression

$-\int\frac{u}{u^2+\frac{3}{4}}du-\frac{2}{3}\int\frac{1}{1+\frac{4u^2}{3}}du$

We can solve the integral $-\int\frac{u}{u^2+\frac{3}{4}}du$ by applying integration method of trigonometric substitution using the substitution

$u=\frac{\sqrt{3}}{2}\tan\left(\theta \right)$

Now, in order to rewrite $d\theta$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=\frac{\sqrt{3}\sec\left(\theta \right)^2}{2}d\theta$

Substituting in the original integral, we get

$-\int\frac{\frac{\sqrt{3}\tan\left(\theta \right)}{2}}{\frac{3}{4}\sec\left(\theta \right)^2}\frac{\sqrt{3}\sec\left(\theta \right)^2}{2}d\theta-\frac{2}{3}\int\frac{1}{1+\frac{4u^2}{3}}du$

Simplifying

$-\int\tan\left(\theta \right)d\theta-\frac{2}{3}\int\frac{1}{1+\frac{4u^2}{3}}du$

Simplify the expression

$-\int\tan\left(\theta \right)d\theta-\frac{2}{3}\int\frac{3}{4u^2+3}du$

The integral of a function times a constant ($3$) is equal to the constant times the integral of the function

$-\int\tan\left(\theta \right)d\theta+3\left(-\frac{2}{3}\right)\int\frac{1}{3+4u^2}du$

Multiply the fraction and term in $3\left(-\frac{2}{3}\right)\int\frac{1}{3+4u^2}du$

$-\int\tan\left(\theta \right)d\theta-2\int\frac{1}{3+4u^2}du$

The integral of the tangent function is given by the following formula, $\displaystyle\int\tan(x)dx=-\ln(\cos(x))$

$1\ln\left|\cos\left(\theta \right)\right|-2\int\frac{1}{3+4u^2}du$

Any expression multiplied by $1$ is equal to itself

$\ln\left|\cos\left(\theta \right)\right|-2\int\frac{1}{3+4u^2}du$

Express the variable $\theta$ in terms of the original variable $x$

$\ln\left|\frac{\frac{\sqrt{3}}{2}}{\sqrt{u^2+\frac{3}{4}}}\right|-2\int\frac{1}{3+4u^2}du$

Divide fractions $\frac{\frac{\sqrt{3}}{2}}{\sqrt{u^2+\frac{3}{4}}}$ with Keep, Change, Flip: $\frac{a}{b}\div c=\frac{a}{b}\div\frac{c}{1}=\frac{a}{b}\times\frac{1}{c}=\frac{a}{b\cdot c}$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{u^2+\frac{3}{4}}}\right|-2\int\frac{1}{3+4u^2}du$

Replace $u$ with the value that we assigned to it in the beginning: $x+\frac{1}{2}$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|-2\int\frac{1}{3+4u^2}du$

Solve the integral applying the substitution $v^2=\frac{4u^2}{3}$. Then, take the square root of both sides, simplifying we have

$v=\frac{2u}{\sqrt{3}}$

Now, in order to rewrite $du$ in terms of $dv$, we need to find the derivative of $v$. We need to calculate $dv$, we can do that by deriving the equation above

$dv=\frac{2}{\sqrt{3}}du$

Isolate $du$ in the previous equation

$\frac{dv}{\frac{2}{\sqrt{3}}}=du$

After replacing everything and simplifying, the integral results in

$\ln\left(\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right)+\frac{-\sqrt{3}}{3}\int\frac{1}{1+v^2}dv$

Solve the integral by applying the formula $\displaystyle\int\frac{x'}{x^2+a^2}dx=\frac{1}{a}\arctan\left(\frac{x}{a}\right)$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}}{3}\arctan\left(v\right)$

Multiplying the fraction by $\arctan\left(v\right)$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}\arctan\left(v\right)}{3}$

Replace $v$ with the value that we assigned to it in the beginning: $\frac{2u}{\sqrt{3}}$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}\arctan\left(\frac{2u}{\sqrt{3}}\right)}{3}$

Replace $u$ with the value that we assigned to it in the beginning: $x+\frac{1}{2}$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}\arctan\left(\frac{2\left(x+\frac{1}{2}\right)}{\sqrt{3}}\right)}{3}$

Simplify the product by distributing $2$ to both terms

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}$
8

The integral $-\int\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}dx$ results in: $\ln\left(\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right)+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}$

$\ln\left(\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right)+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}$
9

Gather the results of all integrals

$\ln\left|x\right|+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}+\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|$
10

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\ln\left|x\right|+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}+\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+C_0$

Réponse finale au problème

$\ln\left|x\right|+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}+\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+C_0$

Vous avez des difficultés en mathématiques ?

Accédez à des solutions détaillées, étape par étape, à des milliers de problèmes, dont le nombre augmente chaque jour !