👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Intégration Cyclique Par Parties

Intégration cyclique par parties Calculator

Get detailed solutions to your math problems with our Intégration cyclique par parties step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of intégration cyclique par parties. This solution was automatically generated by our smart calculator:

$\int\sec^3\:xdx$
2

Apply the formula: $\int\sec\left(\theta \right)^ndx$$=\int\sec\left(\theta \right)^2\sec\left(\theta \right)^{\left(n-2\right)}dx$, where $n=3$

$\int\sec\left(x\right)^2\sec\left(x\right)dx$
3

We can solve the integral $\int\sec\left(x\right)^2\sec\left(x\right)dx$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$

Apply the trigonometric identity: $\frac{d}{dx}\left(\sec\left(\theta \right)\right)$$=\frac{d}{dx}\left(\theta \right)\sec\left(\theta \right)\tan\left(\theta \right)$

$\frac{d}{dx}\left(x\right)\sec\left(x\right)\tan\left(x\right)$

Apply the formula: $\frac{d}{dx}\left(x\right)$$=1$

$\sec\left(x\right)\tan\left(x\right)$
4

First, identify or choose $u$ and calculate it's derivative, $du$

$\begin{matrix}\displaystyle{u=\sec\left(x\right)}\\ \displaystyle{du=\sec\left(x\right)\tan\left(x\right)dx}\end{matrix}$
5

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\sec\left(x\right)^2dx}\\ \displaystyle{\int dv=\int \sec\left(x\right)^2dx}\end{matrix}$
6

Solve the integral to find $v$

$v=\int\sec\left(x\right)^2dx$
7

Apply the formula: $\int\sec\left(\theta \right)^2dx$$=\tan\left(\theta \right)+C$

$\tan\left(x\right)$

Apply the formula: $x\cdot x$$=x^2$, where $x=\tan\left(x\right)$

$\tan\left(x\right)\sec\left(x\right)-\int\sec\left(x\right)\tan\left(x\right)^2dx$
8

Now replace the values of $u$, $du$ and $v$ in the last formula

$\tan\left(x\right)\sec\left(x\right)-\int\sec\left(x\right)\tan\left(x\right)^2dx$

Applying the trigonometric identity: $\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2-1$

$\tan\left(x\right)\sec\left(x\right)-\int\sec\left(x\right)\left(\sec\left(x\right)^2-1\right)dx$
9

We identify that the integral has the form $\int\tan^m(x)\sec^n(x)dx$. If $n$ is odd and $m$ is even, then we need to express everything in terms of secant, expand and integrate each function separately

$\tan\left(x\right)\sec\left(x\right)-\int\sec\left(x\right)\left(\sec\left(x\right)^2-1\right)dx$

Multiply the single term $\sec\left(x\right)$ by each term of the polynomial $\left(\sec\left(x\right)^2-1\right)$

$\int\left(\sec\left(x\right)^2\sec\left(x\right)-\sec\left(x\right)\right)$

Apply the formula: $x\cdot x^n$$=x^{\left(n+1\right)}$, where $x^nx=\sec\left(x\right)^2\sec\left(x\right)$, $x=\sec\left(x\right)$, $x^n=\sec\left(x\right)^2$ and $n=2$

$\tan\left(x\right)\sec\left(x\right)-\int\left(\sec\left(x\right)^{3}-\sec\left(x\right)\right)dx$
10

Multiply the single term $\sec\left(x\right)$ by each term of the polynomial $\left(\sec\left(x\right)^2-1\right)$

$\tan\left(x\right)\sec\left(x\right)-\int\left(\sec\left(x\right)^{3}-\sec\left(x\right)\right)dx$

Expand the integral $\int\left(\sec\left(x\right)^{3}-\sec\left(x\right)\right)dx$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$\tan\left(x\right)\sec\left(x\right)-\int\sec\left(x\right)^{3}dx+1\int\sec\left(x\right)dx$

Apply the formula: $1x$$=x$, where $x=\int\sec\left(x\right)dx$

$\tan\left(x\right)\sec\left(x\right)-\int\sec\left(x\right)^{3}dx+\int\sec\left(x\right)dx$
11

Simplify the expression

$\tan\left(x\right)\sec\left(x\right)-\int\sec\left(x\right)^{3}dx+\int\sec\left(x\right)dx$

Apply the formula: $\int\sec\left(\theta \right)dx$$=\ln\left(\sec\left(\theta \right)+\tan\left(\theta \right)\right)+C$

$\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|$
12

The integral $\int\sec\left(x\right)dx$ results in: $\ln\left(\sec\left(x\right)+\tan\left(x\right)\right)$

$\ln\left(\sec\left(x\right)+\tan\left(x\right)\right)$
13

This integral by parts turned out to be a cyclic one (the integral that we are calculating appeared again in the right side of the equation). We can pass it to the left side of the equation with opposite sign

$\int\sec\left(x\right)^{3}dx=\tan\left(x\right)\sec\left(x\right)-\int\sec\left(x\right)^{3}dx+\ln\left(\sec\left(x\right)+\tan\left(x\right)\right)$
14

Moving the cyclic integral to the left side of the equation

$\int\sec\left(x\right)^{3}dx+\int\sec\left(x\right)^{3}dx=\tan\left(x\right)\sec\left(x\right)+\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|$
15

Adding the integrals

$2\int\sec\left(x\right)^{3}dx=\tan\left(x\right)\sec\left(x\right)+\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|$
16

Move the constant term $2$ dividing to the other side of the equation

$\int\sec\left(x\right)^{3}dx=\frac{1}{2}\left(\tan\left(x\right)\sec\left(x\right)+\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|\right)$
17

The integral results in

$\frac{1}{2}\left(\tan\left(x\right)\sec\left(x\right)+\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|\right)$
18

Gather the results of all integrals

$\frac{1}{2}\left(\tan\left(x\right)\sec\left(x\right)+\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|\right)$
19

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}\left(\tan\left(x\right)\sec\left(x\right)+\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|\right)+C_0$

Multiply the single term $\frac{1}{2}$ by each term of the polynomial $\left(\tan\left(x\right)\sec\left(x\right)+\ln\left(\sec\left(x\right)+\tan\left(x\right)\right)\right)$

$\frac{1}{2}\tan\left(x\right)\sec\left(x\right)+\frac{1}{2}\ln\left(\sec\left(x\right)+\tan\left(x\right)\right)+C_0$
20

Expand and simplify

$\frac{1}{2}\tan\left(x\right)\sec\left(x\right)+\frac{1}{2}\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|+C_0$

Final answer to the problem

$\frac{1}{2}\tan\left(x\right)\sec\left(x\right)+\frac{1}{2}\ln\left|\sec\left(x\right)+\tan\left(x\right)\right|+C_0$

Are you struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!