👉 Essayez maintenant NerdPal! Notre nouvelle application de mathématiques sur iOS et Android
  1. calculatrices
  2. Équation Différentielle Linéaire

Calculatrice Équation différentielle linéaire

Résolvez vos problèmes de mathématiques avec notre calculatrice Équation différentielle linéaire étape par étape. Améliorez vos compétences en mathématiques grâce à notre longue liste de problèmes difficiles. Retrouvez tous nos calculateurs ici.

Go!
Mode symbolique
Mode texte
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of linear differential equation. This solution was automatically generated by our smart calculator:

$x\frac{dy}{dx}-2y=x^3cos\left(x\right)$
2

Divide all the terms of the differential equation by $x$

$\frac{x}{x}\frac{dy}{dx}+\frac{-2y}{x}=\frac{x^3\cos\left(x\right)}{x}$

Simplify the fraction $\frac{x}{x}$ by $x$

$1\left(\frac{dy}{dx}\right)+\frac{-2y}{x}=\frac{x^3\cos\left(x\right)}{x}$

Any expression multiplied by $1$ is equal to itself

$\frac{dy}{dx}+\frac{-2y}{x}=\frac{x^3\cos\left(x\right)}{x}$

Simplify the fraction $\frac{x^3\cos\left(x\right)}{x}$ by $x$

$\frac{dy}{dx}+\frac{-2y}{x}=x^{2}\cos\left(x\right)$
3

Simplifying

$\frac{dy}{dx}+\frac{-2y}{x}=x^{2}\cos\left(x\right)$
4

We can identify that the differential equation has the form: $\frac{dy}{dx} + P(x)\cdot y(x) = Q(x)$, so we can classify it as a linear first order differential equation, where $P(x)=\frac{-2}{x}$ and $Q(x)=x^{2}\cos\left(x\right)$. In order to solve the differential equation, the first step is to find the integrating factor $\mu(x)$

$\displaystyle\mu\left(x\right)=e^{\int P(x)dx}$

Compute the integral

$\int\frac{-2}{x}dx$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$-2\ln\left|x\right|$
5

To find $\mu(x)$, we first need to calculate $\int P(x)dx$

$\int P(x)dx=\int\frac{-2}{x}dx=-2\ln\left(x\right)$

Simplify $e^{-2\ln\left|x\right|}$ by applying the properties of exponents and logarithms

$x^{-2}$
6

So the integrating factor $\mu(x)$ is

$\mu(x)=x^{-2}$

When multiplying exponents with same base we can add the exponents

$\frac{dy}{dx}x^{-2}+\frac{-2y}{x}x^{-2}=x^{2-2}\cos\left(x\right)$

Add the values $2$ and $-2$

$\frac{dy}{dx}x^{-2}+\frac{-2y}{x}x^{-2}=x^{0}\cos\left(x\right)$

Any expression (except $0$ and $\infty$) to the power of $0$ is equal to $1$

$\frac{dy}{dx}x^{-2}+\frac{-2y}{x}x^{-2}=\cos\left(x\right)$

Multiplying the fraction by $x^{-2}$

$\frac{dy}{dx}x^{-2}+\frac{-2yx^{-2}}{x}=\cos\left(x\right)$

Simplify the fraction $\frac{-2yx^{-2}}{x}$ by $x$

$\frac{dy}{dx}x^{-2}-2yx^{-3}=\cos\left(x\right)$
7

Now, multiply all the terms in the differential equation by the integrating factor $\mu(x)$ and check if we can simplify

$\frac{dy}{dx}x^{-2}-2yx^{-3}=\cos\left(x\right)$
8

We can recognize that the left side of the differential equation consists of the derivative of the product of $\mu(x)\cdot y(x)$

$\frac{d}{dx}\left(x^{-2}y\right)=\cos\left(x\right)$
9

Integrate both sides of the differential equation with respect to $dx$

$\int\frac{d}{dx}\left(x^{-2}y\right)dx=\int\cos\left(x\right)dx$
10

Simplify the left side of the differential equation

$x^{-2}y=\int\cos\left(x\right)dx$

Apply the integral of the cosine function: $\int\cos(x)dx=\sin(x)$

$\sin\left(x\right)$

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\sin\left(x\right)+C_0$
11

Solve the integral $\int\cos\left(x\right)dx$ and replace the result in the differential equation

$x^{-2}y=\sin\left(x\right)+C_0$

Applying the property of exponents, $\displaystyle a^{-n}=\frac{1}{a^n}$, where $n$ is a number

$\frac{1}{x^{\left|-2\right|}}y$

Multiplying the fraction by $y$

$\frac{y}{x^{\left|-2\right|}}$
12

Applying the property of exponents, $\displaystyle a^{-n}=\frac{1}{a^n}$, where $n$ is a number

$\frac{1}{x^{2}}y=\sin\left(x\right)+C_0$

Multiply the fraction by the term $y$

$\frac{1y}{x^{2}}=\sin\left(x\right)+C_0$

Any expression multiplied by $1$ is equal to itself

$\frac{y}{x^{2}}=\sin\left(x\right)+C_0$
13

Multiply the fraction by the term $y$

$\frac{y}{x^{2}}=\sin\left(x\right)+C_0$

Multiply both sides of the equation by $x^{2}$

$y=x^{2}\left(\sin\left(x\right)+C_0\right)$
14

Find the explicit solution to the differential equation. We need to isolate the variable $y$

$y=x^{2}\left(\sin\left(x\right)+C_0\right)$

Réponse finale au problème

$y=x^{2}\left(\sin\left(x\right)+C_0\right)$

Vous avez des difficultés en mathématiques ?

Accédez à des solutions détaillées, étape par étape, à des milliers de problèmes, dont le nombre augmente chaque jour !